Function Blog
The Function Blog section is a way to show generation functions in a more unstructured way.
defined functions:
j(z) = conjugate(z) := z.im = -z.im;
z1z(z) := z + 1/z
z1z(z,c) := z + 1/z + c
z1z2(z) := z^2 + 1/z^2
z1z2(z,c) := z^2 + 1/z^2 + c
z1z3(z) := z^3 + 1/z^3
z1z3(z,c) := z^3 + 1/z^3 + c
zc1zc(z,c) := z*c + 1/z*c
zc2zc(z,c) := z^2*c^2 + 1/(z^2*c^2)
zc3zc(z,c) := z^3*c^3 + 1/(z^3*c^3)
iz1z(z) = inversez1z(z) := 0.5(z + sqrt(z^2 - 4))
iz1z(z,c) = inversez1z(z,c)) := 0.5(z + sqrt(z^2 - 4)) + c
izc1zc(z,c) = inversezc1zc(z,c)) := (c*z - c*sqrt(z^2-4)) / (2*c^2)
mabrot(z,c) := z^2 + c
mabrot(z) := z^2
bead(z,c) := z + 1/z + c
bead(z) := z + 1/z
nova(z,c) := 0.8(z + 1/z) + c
nova(z) := 0.8(z + 1/z)
amoeba(z,c) := -0.8(z + 1/z) + c
amoeba(z) := -0.8(z + 1/z)
logistic(z,c) := c*z(1-z)
dferguson(z,c) := 0.05z^2 - 0.05/z^2 + z + c
dferguson(z) := 0.05z^2 - 0.05/z^2 + z
zatanz(z,c) := z*atan(z) + c
zatanz(z) := z*atan(z)
zloglog1z(z,c) := z*log(log(1/z)) + c
zloglog1z(z) := z*log(log(1/z))
zpz(z) := z^z
zpz(z,c) := z^z + c
zpmz(z) := z^-z
zpmz(z,c) := z^-z + c
zpz2(z) := z^(z^2)
zpz2(z,c) := z^(z^2) + c
zpmz2(z) := z^(-z^2)
zpmz2(z,c) := z^(-z^2) + c
expzc(z,c) := z*exp(z+c)
gam(z) := gamma(z) Gamma Function
loggam(z) := log(gam(z))
psi(z) := Digamma Function or Psi Function
stir(z) := Stirling Function, approximates the Gamma Function
logstir(z) := log(stir(z))
fad(z) := Faddeeva Function
logfad(z) := log(fad(z))
beta(z,c) := Beta Function
logbeta(z,c) := log(beta)
dxbeta(z,c) := derivation d/dz of Beta Function
logdxbeta(z,c) := logdx(beta)
erf(z) := Error Function
erfc(z) := complementary Error Function
erfi(z) := rotated Error Function
erfcx(z) := underflow-compensated complementary Error Function
dawson(z) := Dawson Function