Function Blog

The Function Blog section is a way to show generation functions in a more unstructured way.

Function Blog

May 2017

May 2017

May 2017

March 2017

March 2017

January 2017

January 2017

January 2017

January 2017

January 2017

January 2017

Christmas 2016

Christmas 2016

Christmas 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

December 2016

defined functions:
  • j(z) = conjugate(z) := z.im = -z.im;
  • z1z(z) := z + 1/z
  • z1z(z,c) := z + 1/z + c
  • z1z2(z) := z^2 + 1/z^2
  • z1z2(z,c) := z^2 + 1/z^2 + c
  • z1z3(z) := z^3 + 1/z^3
  • z1z3(z,c) := z^3 + 1/z^3 + c
  • zc1zc(z,c) := z*c + 1/z*c
  • zc2zc(z,c) := z^2*c^2 + 1/(z^2*c^2)
  • zc3zc(z,c) := z^3*c^3 + 1/(z^3*c^3)
  • iz1z(z) = inversez1z(z) := 0.5(z + sqrt(z^2 - 4))
  • iz1z(z,c) = inversez1z(z,c)) := 0.5(z + sqrt(z^2 - 4)) + c
  • izc1zc(z,c) = inversezc1zc(z,c)) := (c*z - c*sqrt(z^2-4)) / (2*c^2)
  • mabrot(z,c) := z^2 + c
  • mabrot(z) := z^2
  • bead(z,c) := z + 1/z + c
  • bead(z) := z + 1/z
  • nova(z,c) := 0.8(z + 1/z) + c
  • nova(z) := 0.8(z + 1/z)
  • amoeba(z,c) := -0.8(z + 1/z) + c
  • amoeba(z) := -0.8(z + 1/z)
  • logistic(z,c) := c*z(1-z)
  • dferguson(z,c) := 0.05z^2 - 0.05/z^2 + z + c
  • dferguson(z) := 0.05z^2 - 0.05/z^2 + z
  • zatanz(z,c) := z*atan(z) + c
  • zatanz(z) := z*atan(z)
  • zloglog1z(z,c) := z*log(log(1/z)) + c
  • zloglog1z(z) := z*log(log(1/z))
  • zpz(z) := z^z
  • zpz(z,c) := z^z + c
  • zpmz(z) := z^-z
  • zpmz(z,c) := z^-z + c
  • zpz2(z) := z^(z^2)
  • zpz2(z,c) := z^(z^2) + c
  • zpmz2(z) := z^(-z^2)
  • zpmz2(z,c) := z^(-z^2) + c
  • expzc(z,c) := z*exp(z+c)
  • gam(z) := gamma(z) Gamma Function
  • loggam(z) := log(gam(z))
  • psi(z) := Digamma Function or Psi Function
  • stir(z) := Stirling Function, approximates the Gamma Function
  • logstir(z) := log(stir(z))
  • fad(z) := Faddeeva Function
  • logfad(z) := log(fad(z))
  • beta(z,c) := Beta Function
  • logbeta(z,c) := log(beta)
  • dxbeta(z,c) := derivation d/dz of Beta Function
  • logdxbeta(z,c) := logdx(beta)
  • erf(z) := Error Function
  • erfc(z) := complementary Error Function
  • erfi(z) := rotated Error Function
  • erfcx(z) := underflow-compensated complementary Error Function
  • dawson(z) := Dawson Function